Call us at 86 13305696972

News Detail

Welcome to our website!

Meeting water and energy challenges in agri-food sector with technology

2018-06-04 17:15:28

Worldwide, the overall growth in demand for agricultural products will require a 140% increase (pdf) in the supply of water over the next 20 years compared to the past 20 years. While the bulk of this demand will be from irrigation, food processing plants can also be water intensive. So, any technological innovations in the industry that save water are welcome.

One such innovation is by Mars Petcare (pdf), which has developed a recirculation system that reduces the potable water used for cooling in its pet food production process by 95%. Wastewater is also down by 95% and gas by 35% through the use of a treatment method that keeps the water microbiologically stable.

In Brazil, water used in sugar cane processing (pdf) has gone down from 5.6 to 1.83 cubic metres (m3) per tonne in recent years, due to improved technologies and practices in waste water treatment.

Further reductions can be made by replacing the standard wet cane washing process with a new technique of dry cane washing. Costa Rican company Azucarera El Viejo SA has found that this switch has resulted in more than 6m gallons of water being saved each day during the harvest season, netting savings of approximately $54,000 (£32,000) (pdf).

Of course, in food processing, it is not only volume of water that is important, but also the quality of water effluent associated with the manufacturing process. In Brazil, sugar cane is partly processed into ethanol. Vinasse is a byproduct of this process that pollutes water. Technological innovation shows that, while in Brazil emissions of 10-12 litres of vinasse per litre of ethanol are standard, levels of 6 litres can be achieved (pdf).

Other examples of innovative water quality solutions in the agri-foods sector are Briter-Water, which has been piloted in the EU and uses intensified bamboo-based phytoremediation for treating dairy and other food industry effluent; and the Vertical Green Biobed, developed by HEPIA, a school from the University of Applied Sciences of western Switzerland, to improve water treatment of agricultural effluents.

LEAVE A MESSAGE